

Noble Gas Isotope Geochemistry at the Dixie Valley Geothermal Field

B. Mack Kennedy

Center for Isotope Geochemistry

Lawrence Berkeley National Laboratory

Collaborators

Stuart Johnson Cathy Janik
Dick Benoit Fraser Goff

D. L. Shuster Matthijs van Soest

Primary Goals

- (1) Identify Heat and Fluid Sources
- (2) Evaluate Noble Gases as Potential Natural Tracers for Monitoring Injectate
- (3) Integrate Chemical and Isotopic Data into Reservoir Simulation Models

Noble Gases Natural Tracers for Geothermal Fluids

Noble Gases: Sensitive Natural Tracers For Detecting and Monitoring Injectate Returns to Geothermal Reservoirs

Proof of Concept

Natural Injectate Tracers

Chloride and Water Isotopes - Widely used

- Must assume single indigenous reservoir fluid
- Only applicable in single phase liquid systems
- Inapplicable in systems with high TDS
- Low sensitivity: Injectate concentrations are similar to production fluids
 - With 25% steam fraction:
 - --- [CI] (injectate) ~ 1.30 [CI] (production fluid)
 - --- D(d 18 O) ~ 1-2 %

Noble Gases

- Predictable and relatively invariant composition and concentration in the indigenous reservoir fluids.
- <u>High sensitivity</u>: Injectate concentrations are extremely low
 - With 25% steam fraction
 - --- [Noble Gas] (injectate) ~ 0.01-0.001 [Noble Gas] (production fluid)
 - Noble gases are ~4-40 times more sensitive.

Noble Gases: Tracers for Natural Recharge and Injectate Theory

- Phase Separation:
 - Case I ® Isothermal Batch or Single Stage Separation
 - Case II ® Non-isothermal Continuous Steam Separation (Rayleigh Distillation).
- Very low solubility leads to high sensitivity for monitoring injectate return.
- With a steam fraction of only 2.5%: residual liquid is depleted in ³⁶Ar by factor of ~20!
- Ultimate composition is path dependent.

Tracers for Re-Injected Fluids at Dixie Valley

Dixie Valley, Nevada Geothermal Field

334.5 billion pounds of flashed brine have beeen injected into the geothermal field since September 1988

Tracers for Re-Injected Fluids at Dixie Valley

- Composition of re-injected brine is consistent with isothermal batch separation at ~250 °C with ~20-30% steam fraction.
- Noble gases in 1998 and 1999 production fluids are significantly depleted (2-4 times) relative to 25°C ASW.
- Composition of Section 7 wells reflect mixing of re-injected brine and meteoric water.
- Volume fraction of injectate in production stream:

Section 33 ~30-35% Section 7 ~50-80%

Noble Gases: Tracers For Re-Injected Brine

Tracers for Re-Injected Fluids at Dixie Valley

Section 7 Wells 1998 to 1999

- [36Ar] declined from 1998 to 1999 in all but one well (74-7).
- Relative proportion of co-produced injectate increased at constant rate:
 - D(Vinj/Vtot) ~ 20%/year
- Exception (74-7): [36Ar] increased by factor of ~2.
 - Cold groundwater added to injectate beginning mid-1997 (Well 65-18)

Helium Isotopes in Dixie Valley Wells, Springs and Fumaroles

Heat and Fluid sources

Helium Isotopes in Geothermal Systems

³He/ ⁴He in a Variety of Geothermal Systems

Coupling of Heat and Helium

- ~75% of Earth's heat budget is from natural radio-decay of U and Th --- leads to well defined (4He/3He) and Q(heat)/3He ratios for mantle and crustal fluids (green triangles)
- Using this coherence, the heat source of a geothermal reservoir can be evaluated:
 - Dixie Valley = 10-15% of heat derived from mantle - remainder is derived from the crustal geothermal gradient
 - **NW Geysers = 100%**
- Heat loss by conduction, boiling, or mixing will shift the helium isotopic composition and Heat/³He ratios in predictable ways --- allowing present state of a geothermal reservoir to be ascertained.

Helium and Heat In Geothermal Systems

1-D Fluid Flow Model Through Range Front Fault

 Steady state 1-d advection (no dispersion) upward flow scaled to crustal thickness:

$$q = \frac{H_{crust} * \rho_{s} * P(He)}{\rho_{f} * [^{4}He]_{f,mantle}} \left[\frac{(R / Ra)_{meas} - (R / Ra)_{crust}}{(R / Ra)_{mant} - (R / Ra)_{meas}} \right]$$

q = fluid upflow rate in fault zone H_{crust} = thickness of brittle + ductile crust r_s , r_f = density of solid and fluid P(He) = present day 4He production rate from U+Th in fault zone minerals (R/Ra) = helium isotopic composition $[^4He]_{f,mantle}$ = original 4He concentration in the upwelling mantle fluid Calculated from 3He in measured fluid.

Dixie Valley geothermal wells (H_{crust} = 15 km;
 [U] = 1 ppm):

q ~ 0.5 mm/yr

1-D Fluid Flow Model Through Range Front Fault

Fluid Mixing

Summary

Identifying and Monitoring Re-Injected Fluids

- Noble gases compliment traditional conservative tracers by providing a more sensitive quantitative monitoring tool.
- Section 7 Wells: ~50-80% injectate and increasing ~20%/year

Heat and Fluid Sources

- ~10-15% of heat derived from mantle, remainder from crustal geothermal gradient.
- → Helium isotopes imply vertical flow rates of mantle fluids through the range front fault of ~0.5 mm/yr.
- Helium abundances and isotopic compositions require that Dixie Valley thermal waters are a mixture of shallow young groundwater and a deeper fluid indistinguishable from the fluids produced in the Geothermal field.